Nonperiodic Trigonometric Polynomial Approximation
نویسنده
چکیده
The most common approach for approximating non-periodic function defined on a finite interval is based on considering polynomials as basis functions. In this paper we will address the non-optimallity of polynomial approximation and suggest to switch from powers of x to powers of sin(px) where p is a parameter which depends on the dimension of the approximating subspace. The new set does not suffer from the drawbacks of polynomial approximation and by using them one can approximate analytic functions with spectral accuracy. An important application of the new basis functions is related to numerical integration. A quadrature based on these functions results in higher accuracy compared to Legendre quadrature.
منابع مشابه
Extension of Chebfun to Periodic Functions
Algorithms and underlying mathematics are presented for numerical computation with periodic functions via approximations to machine precision by trigonometric polynomials, including the solution of linear and nonlinear periodic ordinary differential equations. Differences from the nonperiodic Chebyshev case are highlighted.
متن کاملApproximation by Trigonometric Polynomials in Weighted Rearrangement Invariant Spaces
We investigate the approximation properties of trigonometric polynomials and prove some direct and inverse theorems for polynomial approximation in weighted rearrangement invariant spaces.
متن کاملAccelerating Convergence of Trigonometric Approximations
Lanczos has recently developed a method for accelerating the convergence of trigonometric approximations for smooth, nonperiodic functions by modifying their boundary behavior. The method is reformulated here in terms of interpolation theory and is shown to be related to the theory of Lidstone interpolation. Extensions given include a new type of modifying function and the establishment of crit...
متن کاملNon-equidistant approximate DFT based on Z-splines
In this paper, we consider an algorithm that efficiently evaluates a trigonometric polynomial at arbitrarily spaced nodes. It is based on the approximation of the polynomial by a function we can evaluate easily. We are particularly interested in the case where we interpolate the trigonometric polynomial using high-order cardinal interpolation kernels known as Z-splines, which we construct and s...
متن کاملA Sharp Jackson Inequality for Best Trigonometric Approximation
The paper presents a sharp Jackson inequality and a corresponding inverse one for best trigonometric approximation in terms of moduli of smoothness that are equivalent to zero on the trigonometric polynomials up to a certain degree. Sharp relations between such moduli of different order are also considered.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 60 شماره
صفحات -
تاریخ انتشار 2014